1.Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heteroge-neity in cancer evolution. Nature 2013;501:338-45.
3.Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013;501:346-54.
4.Ishii G, Ochiai A, Neri S. Phenotypic and function-al heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug De-liv Rev 2016;99(Pt B):186-96.
5.Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005;23:879-94.
6.Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nature Rev Cancer 2009;9:285-93.
9.Romero-Lopez M, Trinh AL, Sobrino A, Hatch MM, Keating MT, Fimbres C, et al. Recapitulating the human tumor microenvironment: colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials 2017;116:118-29.
10.Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 2007;52:1565-76.
12.Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011;147:992-1009.
15.Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis. Breast 2013;22(Suppl 2):S66-72.
24.Linxweiler J, Hammer M, Muhs S, Kohn M, Prya-lukhin A, Veith C, et al. Patient-derived, three-dimensional spheroid cultures provide a versatile translational model for the study of organ-confined prostate cancer. J Cancer Res Clin Oncol 2019;145:551-9.
25.Hagemann J, Jacobi C, Hahn M, Schmid V, Welz C, Schwenk-Zieger S, et al. Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer. Antican-cer Res 2017;37:2201-10.
27.Hribar KC, Wheeler CJ, Bazarov A, Varshneya K, Yamada R, Buckley P, et al. A simple three-dimensional hydrogel platform enables ex vivo cell culture of patient and PDX tumors for assaying their response to clinically relevant therapies. Mol Can-cer Ther 2019;18:718-25.
30.Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastro-enterology 2011;141:1762-72.
31.Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human in-testinal organoids. Nat Med 2015;21:256-62.
32.Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Cor-bo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 2015;160:324-38.
35.Kijima T, Nakagawa H, Shimonosono M, Chandra-mouleeswaran PM, Hara T, Sahu V, et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell Mol Gastroenterol Hepatol 2019;7:73-91.
36.Orditura M, Della Corte CM, Diana A, Ciaramella V, Franzese E, Famiglietti V, et al. Three dimensional primary cultures for selecting human breast can-cers that are sensitive to the anti-tumor activity of ipatasertib or taselisib in combination with anti-microtubule cytotoxic drugs. Breast 2018;41:165-71.
40.Kondo J, Ekawa T, Endo H, Yamazaki K, Tanaka N, Kukita Y, et al. High-throughput screening in colorectal cancer tissue-originated spheroids. Can-cer Sci 2019;110:345-55.
41.Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 2010;10:1886-90.
47.Nagourney RA, Blitzer JB, Shuman RL, Asciuto TJ, Deo EA, Paulsen M, et al. Functional profiling to select chemotherapy in untreated, advanced or metastatic non-small cell lung cancer. Anticancer Res 2012;32:4453-60.
49.Geller J, Partido C, Sionit L, Youngkin T, Nacht-sheim D, Espanol M, et al. Comparison of andro-gen-independent growth and androgen-dependent growth in BPH and cancer tissue from the same radical prostatectomies in sponge-gel matrix his-toculture. Prostate 1997;31:250-4.
50.Centenera MM, Gillis JL, Hanson AR, Jindal S, Tay-lor RA, Risbridger GP, et al. Evidence for efficacy of new Hsp90 inhibitors revealed by ex vivo culture of human prostate tumors. Clin Cancer Res 2012;18:3562-70.
53.Parrish AR, Sallam K, Nyman DW, Orozco J, Cress AE, Dalkin BL, et al. Culturing precision-cut hu-man prostate slices as an in vitro model of prostate pathobiology. Cell Biol Toxicol 2002;18:205-19.
55.Papini S, Rosellini A, De Matteis A, Campani D, Selli C, Caporali A, et al. Establishment of an or-ganotypic in vitro culture system and its relevance to the characterization of human prostate epi-thelial cancer cells and their stromal interactions. Pathol Res Pract 2007;203:209-16.
58.Votanopoulos KI, Mazzocchi A, Sivakumar H, For-sythe S, Aleman J, Levine EA, et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study. Ann Surg On-col 2019;26:139-47.
59.Tam RY, Yockell-Lelievre J, Smith LJ, Julian LM, Baker AEG, Choey C, et al. Rationally designed 3D hydrogels model invasive lung diseases enabling high-content drug screening. Adv Mater 2019;31:e1806214.
61.Taubenberger AV, Bray LJ, Haller B, Shaposhnykov A, Binner M, Freudenberg U, et al. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater 2016;36:73-85.
64.Zhang G, Song X, Mei J, Ye G, Wang L, Yu L, et al. A simple 3D cryogel co-culture system used to study the role of CAFs in EMT of MDA-MB-231 cells. RSC Adv 2017;7:17208-16.
68.Shokoohmand A, Ren J, Baldwin J, Atack A, Shafiee A, Theodoropoulos C, et al. Microenvironment en-gineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 2019;220:119402.
69.Nayak B, Balachander GM, Manjunath S, Ranga-rajan A, Chatterjee K. Tissue mimetic 3D scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids Surf B Bioin-terfaces 2019;180:334-43.
70.Pereira BA, Lister NL, Hashimoto K, Teng L, Flan-des-Iparraguirre M, Eder A, et al. Tissue engineered human prostate microtissues reveal key role of mast cell-derived tryptase in potentiating cancer-associated fibroblast (CAF)-induced morphometric transition in vitro. Biomaterials 2019;197:72-85.
72.Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, et al. 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 2016;8:30017-26.
73.Wang Y, Shi W, Kuss M, Mirza S, Qi D, Krasnoslo-bodtsev A, et al. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng 2018;4:4401-11.
75.Sung KE, Beebe DJ. Microfluidic 3D models of can-cer. Adv Drug Deliv Rev 2014;79-80:68-78.
80.Manfredonia C, Muraro MG, Hirt C, Mele V, Gov-erna V, Papadimitropoulos A, et al. Maintenance of primary human colorectal cancer microenviron-ment using a perfusion bioreactor-based 3D culture system. Adv Biosyst 2019;3:e1800300.
82.Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, et al. Ex vivo profiling of PD-1 block-ade using organotypic tumor spheroids. Cancer Discov 2018;8:196-215.
83.Astolfi M, Peant B, Lateef MA, Rousset N, Kendall-Dupont J, Carmona E, et al. Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy. Lab Chip 2016;16:312-25.
87.Ruppen J, Wildhaber FD, Strub C, Hall SR, Schmid RA, Geiser T, et al. Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab Chip 2015;15:3076-85.
88.Carr SD, Green VL, Stafford ND, Greenman J. Anal-ysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver main-tained in microfluidic devices. Otolaryngol Head Neck Surg 2014;150:73-80.
89.Cheah R, Srivastava R, Stafford ND, Beavis AW, Green V, Greenman J. Measuring the response of human head and neck squamous cell carcinoma to irradiation in a microfluidic model allowing cus-tomized therapy. Int J Oncol 2017;51:1227-38.
91.Moore N, Doty D, Zielstorff M, Kariv I, Moy LY, Gimbel A, et al. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor in-teractions. Lab Chip 2018;18:1844-58.
93.Zhang W, Lee WY, Siegel DS, Tolias P, Zilberberg J. Patient-specific 3D microfluidic tissue model for multiple myeloma. Tissue Eng Part C Methods 2014;20:663-70.
94.Khin ZP, Ribeiro ML, Jacobson T, Hazlehurst L, Perez L, Baz R, et al. A preclinical assay for chemo-sensitivity in multiple myeloma. Cancer Res 2014;74:56-67.
95.Aleman J, Skardal A. A multi-site metastasis-on-a-chip microphysiological system for assessing meta-static preference of cancer cells. Biotechnol Bioeng 2019;116:936-44.
96.Nagle PW, Plukker JTM, Mu ijs CT, van Luijk P, Coppes RP. Patient-derived tumor organoids for prediction of cancer treatment response. Semin Cancer Biol 2018;53:258-64.