1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
2. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M. . Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144:1941-53.
4. National Cancer Center. 2016 Korea National Cancer registration. Goyang (Korea): National Cancer Center; 2019.
6. Pickersgill NA, Vetter JM, Andriole GL, Shetty AS, Fowler KJ, Mintz AJ. . Accuracy and variability of prostate multiparametric magnetic resonance imaging interpretation using the prostate imaging reporting and data system: a blinded comparison of radiologists. Eur Urol Focus 2018 Oct;13:[Epub]. pii: S2405-4569(18)30301-8. https://doi.org/10.1016/j.euf.2018.10.008.
7. Lin DW, Newcomb LF, Brown MD, Sjoberg DD, Dong Y, Brooks JD. . Evaluating the four kallikrein panel of the 4Kscore for prediction of high-grade prostate cancer in men in the canary prostate active surveillance study. Eur Urol 2017;72:448-54.
8. Loeb S, Sanda MG, Broyles DL, Shin SS, Bangma CH, Wei JT. . The prostate health index selectively identifies clinically significant prostate cancer. J Urol 2015;193:1163-9.
9. Roobol MJ, Schröder FH, van Leeuwen P, Wolters T, van den Bergh RC, van Leenders GJ. . Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test. Eur Urol 2010;58:475-81.
11. Akselrod-Ballin A, Chorev M, Shoshan Y, Spiro A, Hazan A, Melamed R. . Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology 2019;292:331-42.
13. Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B Methodol 1958;20:215-32.
14. Vapnik VN. The nature of statistical learning theory. New York: Springer; 1995.
15. Breiman L. Random forests. Mach Learn 2001;45:5-32.
16. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13-17; San Francisco (CA), USA. New York. ACM. 2016:pp 785-94
17. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W. . LightGBM: a highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30 (NIPS 2017). Neural Information Processing Systems Foundation, Inc.; 2017:p. 3146-54.
19. Droz JP, Albrand G, Gillessen S, Hughes S, Mottet N, Oudard S. . Management of prostate cancer in elderly patients: recommendations of a Task Force of the International Society of Geriatric Oncology. Eur Urol 2017;72:521-31.
20. Takeuchi T, Hattori-Kato M, Okuno Y, Iwai S, Mikami K. Prediction of prostate cancer by deep learning with multilayer artificial neural network. Can Urol Assoc J 2019;13:E145-50.
22. Verma A, St Onge J, Dhillon K, Chorneyko A. PSA density improves prediction of prostate cancer. Can J Urol 2014;21:7312-21.
24. Hamilton AS, Albertsen PC, Johnson TK, Hoffman R, Morrell D, Deapen D. . Trends in the treatment of localized prostate cancer using supplemented cancer registry data. BJU Int 2011;107:576-84.