1.Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S, et al. Intelligent image-activated cell sorting. Cell 2018;175:266-76; e13.
8.Kobayashi H, Lei C, Wu Y, Huang CJ, Yasumoto A, Jona M, et al. Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. Lab Chip 2019;19:2688-98.
19.Sims CE, Allbritton NL. Analysis of single mammalian cells on-chip. Lab Chip 2007;7:423-40.
20.Paie P, Bragheri F, Vazquez RM, Osellame R. Straightforward 3D hydrodynamic focusing in fem-tosecond laser fabricated microfluidic channels. Lab Chip 2014;14:1826-33.
22.Nordin M, Laurell T. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. Lab Chip 2012;12:4610-6.
23.Feizi A, Zhang Y, Greenbaum A, Guziak A, Luong M, Chan RY, et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab Chip 2016;16:4350-8.
24.Riordon J, Sovilj D, Sanner S, Sinton D, Young EWK. Deep learning with microfluidics for bio-technology. Trends Biotechnol 2019;37:310-24.
25.Rossi D, Dannhauser D, Telesco M, Netti PA, Causa F. CD4+ versus CD8+ T-lymphocyte identification in an integrated microfluidic chip using light scattering and machine learning. Lab Chip 2019;19:3888-98.
26.Guo B, Lei C, Wu Y, Kobayashi H, Ito T, Yalikun Y, et al. Optofluidic time-stretch quantitative phase microscopy. Methods 2018;136:116-25.
29.Wu J, Li J, Chan RK. A light sheet based high throughput 3D-imaging flow cytometer for phytoplankton analysis. Opt Express 2013;21:14474-80.
31.Kanno H, Mikami H, Kaya Y, Ozeki Y, Goda K. Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry. Opt Lett 2019;44:467-70.
32.Kanno H, Mikami H, Goda K. High-speed single-pixel imaging by frequency-time-division multiplexing. Opt Lett 2020;45:2339-42.
36.Isozaki A, Mikami H, Tezuka H, Matsumura H, Huang K, Akamine M, et al. Intelligent image-activated cell sorting 2.0. Lab Chip 2020;20:2263-73.
45.Munoz HE, Li M, Riche CT, Nitta N, Diebold E, Lin J, et al. Single-cell analysis of morphological and metabolic heterogeneity in euglena gracilis by fluorescence-imaging flow cytometry. Anal Chem 2018;90:11280-9.
49.Buttarello M, Plebani M. Automated blood cell counts: state of the art. Am J Clin Pathol 2008;130:104-16.
50.Garcia-Sucerquia J, Xu W, Jericho MH, Kreuzer HJ. Immersion digital inline holographic microscopy. Opt Lett 2006;31:1211-3.
59.Jaderberg M, Czarnecki WM, Dunning I, Marris L, Lever G, Castaneda AG, et al. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science 2019;364:859-65.
63.Jiang Y, Lei C, Yasumoto A, Kobayashi H, Aisaka Y, Ito T, et al. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab Chip 2017;17:2426-34.
67.Strom P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol 2020;21:222-32.
70.Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol 2020;21:233-41.
71.Eminaga O, Eminaga N, Semjonow A, Breil B. Diagnostic classification of cystoscopic images using deep convolutional neural networks. JCO Clin Cancer Inform 2018;2:1-8.
74.Lorencin I, Andelic N, Spanjol J, Car Z. Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis. Artif Intell Med 2020;102:101746.
75.Hashemi SMR, Hassanpour H, Kozegar E, Tan T. Cystoscopic image classification based on combining MLP and GA. Int J Nonlinear Anal Appl 2020;11:93-105.
77.Teoh J, Chan E, Cheuk A, Chan R, Qin J, Ng C. A newly developed computer-aided endoscopic diagnostic system for bladder cancer detection. Eur Urol Open Science 2020;19:e1364-5.
78.Yan L, Liu Z, Wang G, Huang Y, Liu Y, Yu Y, et al. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad Radiol 2015;22:1115-21.
79.Kocak B, Yardimci AH, Bektas CT, Turkcanoglu MH, Erdim C, Yucetas U, et al. Textural differences between renal cell carcinoma subtypes: machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur J Radiol 2018;107:149-57.
82.Kim JH, Lee S, Kang SJ, Choi YW, Choi SY, Park JY, et al. Establishment of three-dimensional bioprinted bladder cancer-on-a-chip with a microfluidic system using bacillus Calmette-Guerin. Int J Mol Sci 2021;22:8887.
83.Sonke GS, Heskes T, Verbeek AL, de la Rosette JJ, Kiemeney LA. Prediction of bladder outlet obstruction in men with lower urinary tract symptoms using artificial neural networks. J Urol 2000;163:300-5.
84.Jang KS, Kim JW, Ryu J. Numerical investigation of urethra flow characteristics in benign prostatic hyperplasia. Comput Methods Programs Biomed 2022;224:106978.
87.Blum ES, Porras AR, Biggs E, Tabrizi PR, Sussman RD, Sprague BM, et al. Early detection of ureteropelvic junction obstruction using signal analysis and machine learning: a dynamic solution to a dynamic problem. J Urol 2018;199:847-52.
88.Rajkomar A, Dean J, Kohane I. Machine learning in medicine. Reply N Engl J Med 2019;380:2589-90.
90.Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 2013;35:1798-828.